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Abstract

Although full wave electromagnetic systems are large and cum-
bersome to solve, typically only a few parameters, such as input
impedance, S parameters, and far field pattern. are needed by the
designer or analyst. A reduced order modeling of these parameters is
therefore an important consideration in minimizing the CPU require-
ments. The Asymptotic Waveform Evaluation{AWE) method is one
approach to construct a reduced order model of the input impedance
or other useful electromagnetic parameters. We demonstrate its appli-
cation and validity when used in conjunction with the finite element
method to simulate full wave electromagnetic problems.

1 Introduction

The method of Asymptotic Waveform Evaluation (AWE) provides a reduced-
order model of a linear system and has already been successfully used in VLSI
and circuit analysis to approximate the transfer function associated with a
given set of ports/variables in circuit networks [1, 2, 3]. The basic idea of
the method is to develop an approximate transfer function of a given linear
system from a limited set of spectral solutions. Typically, a Pade expansion
of the transfer function is postulated whose coeficients are then determined
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by matching the Pade representation to the available spectral solutions of
the complete svstem.,

In this paper we investigate the suitability of the AWE method for ap-
proximating the response of a given parameter in full wave simulations of
radiation or scattering problems in electromagnetics. Of particular interest
is the use of AWE for evaluating the input impedance of the antenna over a
given bandwidth from a knowledge of the full wave solution at a few (even a
single) frequencey points. Also. the method can be used to fill in a backscat-
tering pattern with respect to frequency using a few data samples of that
pattern. Below we first describe the recasting of the FEM svstem for ap-
plication of the AWE. We then proceed to describe the AWE method and
demonstrate its application. accuracy and efficiency in computing the input
impedance of a shielded microstrip stub.

2 Theory of Asymptotic Waveform Evalua-
tion

2.1 FEM System

The application of the finite element method to full wave electromagnetic
solutions amounts to generating a linear system of equations by extremizing
the functional [4]

F=<VxEa VXxE>—k<E.3-E>+kb.t. (1)

where <. > denotes an inner-product and b.t. is a possible boundary term

whose specific form is not required for this discussion. Also, the dyadics o
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and  are material related coefficients, k = —— = — is the wavenumber and

¢
w is the corresponding operating frequency with ¢ being the speed of light.
A discretized form of (1) incorporating the appropriate boundary conditions
is [5]
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<A0 + kA, + k2A2> {X}={f}

where A; denote the usual square (sparse) matrices and {f} is a column
matrix describing the specific excitation.



Clearly (2) can be solved using direct or iterative methods for a given
value of the wavenumber. Even though A, is sparse. the solution of the
svstem (2) s computationally intensive and must be repeated for cach &
to obtain a frequency response. Also. certain analvses and designs mav re-
quire both temporal and frequency responses placing additional computa-
tional burdens and a repeated solution of (2) is not an eflicient approach in
generating these responses. An application of AWE to achieve an approxima-
tion to these responses is an attractive alternative. Below we formulate AW
in conjunction with the finite element method (2). for modeling antenna and
microwave circuit problems. For these problems. the excitation column { f}
15 a hinear function of the wavenumber and can therefore e stated as

{ft=~{fi} (3)

with {fi} being independent of frequency. This observation will be specifi-
cally used in our subsequent presentation.

2.2 Asymptotic Waveform Evaluation

To describe the basic idea of AWE in conjunction with the FEM, we begin
by first expanding the solution {X'} in a Taylor series about Ay as

{_\’} = {‘\’0} -+ (k - ko) {‘X]} + (k - k0)2 {_\’2} + ...
(k= ko) {X01} + O {(k = ko)*"} (4)
where { Xy} is the solution of (2) corresponding to the wavenumber ky. By

introducing this expansion into (2) and equating equal powers of & in con-
junction with (3), after some manipulations, we find that

{Xo} = koAJ'{N1}
(X1} = AF'[{A} - A {Xo} - 2koA; {N0}]

{X2} = —AJ[A){X1} 4+ A2({Xo} + 2ke {X1})] (5)
{X;} = -AJ'[A (X} + Ag({Xiz2} + 2ko { X121 })]
with
Ap=Ag+ koA, + kcz)Az (6)



Lxpressions (5) are referred 1o ax the system moments whereas (69 is the
svstem at the prescribed wavenumber (Ag). Although an explicit inversion
of A7' may be needed as indicated in (5). this inversion is used repeated]y
and can thus be stored out of core for the implementation of AW Also.
given that for input impedance computations we are typically interested in
the field value at one location of the computational domain. only a single
entry of {X(k}} need be considered. say (the pth entry) X/ (A). The above
moments can then be reduced to scalar form and the expansions (5) become
a scalar representation of X[ (k) about the corresponding solution at Ay, To
vield a more convergent expression. we can instead revert to a Pade expansion
which is a conventional rational function.

For transient analysis the Pade expansion can be cast by partial fraction
decomposition [3. 6] into
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where Xy is the limiting value as & tends to infinity. This is a qth order
representation and is suitable for time/frequency domain transformation. As
can be realized, the residues and poles (r; and ko + &;) in (7) correspond
to those of the original physical syvstem and play important roles in the
accuracy of the approximation. As can be expected a higher order expansion
with more zeros and poles can provide an improved approximation. The
accuracy of AWE relies on the prediction of the dominant residues and poles
located closest to kg in a complex plane. Its key advantage is that for many
practical electromagnetic problems only a few poles and zeros are needed for
a sufficiently accurate representation.

For a hybrid finite element - boundary integral system, the implementa-
tion of AWE is more involved because the fully populated boundary integral
submatrix of the system has a more complex dependence on frequency. In
this case we may instead approximate the full submatrix with a spectral
expansion of the exponential boundary integral kernel to facilitate the ex-
traction of the system moments. This approach does increase the complexity
in implementing AWE. However, AWE still remains far more efficient in
terms of CPU requirements when compared to the conventional approach of
repeating the system solution at each frequency.



3 Numerical Implementation

As an application of AWE 10 a full wave electromagnetic simulation. we con-
sider the evaluation of the input impedance for a microstrip stub shiclded i a
metallic rectangular cavity as shown in figure 1. The stub’s input impedance
15 a strong function of frequency from 1 3 GHz and this example is therefore
a good demonstration of AWE's capability.

The shielded cavity is 2.38¢m x 6.00cm x 1.0Gem in size and the microstrip
stub resides on a 0.35cm thick substrate having a dielectric constant of 3.2.
The stub is 0.79cm wide and A/2 long at 1.785 GHz and we note that the
back wall of the cavity is terminated by a metal-backed artificial absorber
having relative constants of ¢, = (3.2.-3.2) and g, = (1.0. —1.0).

As a reference solution. the frequency response of the shiclded stub was
first computed from 1 to 3 GHz at 40 MHz intervals (50 points) using a full
wave finite element solution. To demonstrate the efficacy and accuracy of
AW we chose a single input impedance solution at 1.78 Glz in conjunction
with the 4th order and 8th order AWE in (7) to approximate the system
response. Clearly the chosen number of poles or order of the expansion leads
to different accuracies. As seen in Figure 2, the 4th order AWE representa-
tion is in agreement with the real and reactive parts of the reference input
impedance solution over a 56% and 33% bandwidth, respectively. Surpris-
ingly. the 8th order AWE representation recovers the reference solution over
the entire 1-3 GHz band for both the real and reactive parts of the impedance.
However, the C'PU requirements for the 4th and 8th order approximations
are nearly the same except for a few more matrix-vector products needed for
the higher order expansion. The number of these operations are of the same
order as that of the AWE expansion and are much smaller than the size of
the original numerical system.

We conclude that the AWE representation is an extremely useful addition
to electromagnetic simulation codes and packages for computing wideband
frequency responses using only a few samples of the system solution.
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Figure 3: Results of the 4th and 8th order AWE implementation using a
single point expansion at 1.78 GHz. (a) Real part and (b) imaginary part of
the Input impedance
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